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ABSTRACT. In this paper, we generalize the Suzuki-type fixed point theorems in [N. Hussain,
D. Dorić, Z. Kadelburg, and S. Radenović, Suzuki-type fixed point results in metric type
spaces, Fixed Point Theory Appl 2012:126 (2012), 1 - 10] for two maps on metric-type
spaces. Examples are given to validate the results.
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1. INTRODUCTION AND PRELIMINARIES

In [2], Hussain, Dorić, Kadelburg and Radenović have proved the following the-
orems. These results are generalizations of Suzuki-type fixed point theorems in [8]
and [9].

Theorem 1.1 ([2], Theorem 3). Let (X,D,K) be a complete metric-type space, let

T : X −→ X be a map and let θ = θK : [0, 1) −→
( 1
K + 1

, 1
]

be defined by

θ(r) = θK(r) =


1 if 0 ≤ r ≤

√
5− 1
2

1− r

r2
if

√
5− 1
2

< r ≤ bK

1
K + r

if bK < r < 1

where bK =
1−K +

√
1 + 6K +K2

4
is the positive solution of

1− r

r2
=

1
K + r

,

satisfying the following conditions
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(i) D is continuous in each variable.
(ii) There exists r ∈ [0, 1) such that for each x, y ∈ X,

θ(r)D(x, Tx) ≤ D(x, y) implies D(Tx, Ty) ≤
r

K
M(x, y) (1.1)

where

M(x, y) = max
{
D(x, y), D(x, Tx), D(y, Ty),

1
2K

[
D(x, Ty) +D(y, Tx)

]}
.

Then we have

(i) T has a unique fixed point z ∈ X.
(ii) For each x ∈ X, the sequence {Tnx} converges to z.
(iii) T has the property (P ).

Theorem 1.2 ([2], Theorem 4). Let (X,D,K) be a metric-type space and let T :
X −→ X be a map satisfying the following conditions

(i) X is compact.
(ii) D is continuous.
(iii) For all x, y ∈ X and x 6= y,

1
1 +K

D(x, Tx) < D(x, y) implies D(Tx, Ty) <
1
K
D(x, y). (1.2)

Then T has a unique fixed point in X.

In this paper, we extend the main results in [2] for two maps on metric-type
spaces. Examples are given to validate the results.

First we recall some notions and lemmas which will be useful in what follows.

Definition 1.3 ([6], Definition 6). Let X be a nonempty set, let K ≥ 1 be a real
number and let D : X ×X −→ [0,∞) satisfy the following properties

(i) D(x, y) = 0 if and only if x = y.
(ii) D(x, y) = D(y, x) for all x, y ∈ X;
(iii) D(x, z) ≤ K

[
D(x, y) +D(y, z)

]
for all x, y, z ∈ X.

Then (X,D,K) is called a metric-type space.

Note that a metric-type space was introduced and studied under the name of
a b-metric space by Czerwik in [1]. Moreover, in [5], Khamsi introduced another
definition of a metric-type space with a bit difference, where the condition (3) in
Definition 1.3 is replaced by
D(x, z) ≤ K

[
D(x, y1) + · · ·+D(yn, z)

]
for all x, y1, · · · , yn, z ∈ X.

Definition 1.4 ([6], Definition 7). Let (X,D,K) be a metric-type space.
(i) A sequence {xn} is called convergent to x ∈ X if lim

n→∞
D(xn, x) = 0.

(ii) A sequence {xn} is called Cauchy if lim
n,m→∞

D(xn, xm) = 0.

(iii) (X,D,K) is called complete if every Cauchy sequence is a convergent se-
quence.

Definition 1.5 ([3], page 2). A map T : X → X is called to have the property (P )
if F(T ) = F(Tn) for all n ∈ N, where F(T ) = {x ∈ X : Tx = x}.

Definition 1.6 ([7], Definition 1.2). Let (X, d) be a metric space and T : X −→ X
be a map. T is called sequentially convergent if {yn} is convergent provided {Tyn}
is convergent.
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Lemma 1.7 ([4], Lemma 3.1). Let {yn} be a sequence in a metric-type space
(X,D,K) such that

D(yn, yn+1) ≤ λD(yn−1, yn) (1.3)

for some λ ∈ [0,
1
K

) and all n ∈ N. Then {yn} is a Cauchy sequence in (X,D,K).

2. MAIN RESULTS

The following result is a sufficient condition for a map on a metric-type space
having the property (P ). If K = 1, this result becomes [3, Theorem 1.1].

Lemma 2.1. Let (X,D,K) be a metric-type space and T : X −→ X be a map
such that

D(Tx, T 2x) ≤ λD(x, Tx) (2.1)
for some 0 ≤ λ < 1 and all x ∈ X. Then T has property (P ).

Proof. If u ∈ F(Tn), that is, Tnu = u, then from (2.1) we have

D(u, Tu) = D(TTn−1u, T 2Tn−1u) ≤ λD(Tn−1u, TTn−1u) ≤ · · · ≤ λnD(u, Tu).

Since 0 ≤ λn < 1, we get D(u, Tu) = 0, that is, u ∈ F(T ).
If u ∈ F(T ), that is Tu = u, then

D(u, Tnu) = D(u, Tn−1u) = . . . = D(u, Tu) = 0.

Then Tnu = u, that is u ∈ F(Tn). This proves that T has property (P ). �

The first main result of the paper is as follows.

Theorem 2.2. Let (X,D,K) be a complete metric-type space, let T, F : X −→ X

be two maps and let θ = θK : [0, 1) −→
( 1
K + 1

, 1
]

be defined by

θ(r) = θK(r) =


1 if 0 ≤ r ≤

√
5− 1
2

1− r

r2
if

√
5− 1
2

< r ≤ bK

1
K + r

if bK < r < 1

(2.2)

where bK =
1−K +

√
1 + 6K +K2

4
is the positive solution of

1− r

r2
=

1
K + r

,

satisfying the following conditions

(i) D is continuous in each variable.
(ii) There exists r ∈ [0, 1) such that for each x, y ∈ X

θ(r)D(Fx, FTx) ≤ D(Fx, Fy) implies D(FTx, FTy) ≤
r

K
M(x, y) (2.3)

where

M(x, y) = max
{
D(Fx, Fy), D(Fx, FTx), D(Fy, FTy),

1
2K

[
D(Fx, FTy)+D(Fy, FTx)

]}
.

(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

(i) T has a unique fixed point a ∈ X.
(ii) For each x ∈ X, the sequence {FTnx} converges to Fa.
(iii) If TF = FT , then T has the property (P ) and F , T have a unique common

fixed point.
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Proof. (1). For each x ∈ X, since θ(r) ≤ 1, we have θ(r)D(Fx, FTx) ≤ D(Fx, FTx).
It follows from (2.3) that

D(FTx, FT 2x) (2.4)

≤
r

K
max

{
D(Fx, FTx), D(Fx, FTx), D(FTx, FT 2x),

1
2K

[
D(Fx, FT 2x) +D(FTx, FTx)

]}
≤

r

K
max

{
D(Fx, FTx), D(FTx, FT 2x),

1
2K

K
[
D(Fx, FTx) +D(FTx, FT 2x)

]}
=

r

K
max

{
D(Fx, FTx), D(FTx, FT 2x)

}
.

We consider following two cases.
Case 1. max

{
D(Fx, FTx), D(FTx, FT 2x)

}
= D(FTx, FT 2x). Then (2.4) be-

comes D(FTx, FT 2x) ≤
r

K
D(FTx, FT 2x). Since

r

K
< 1, we have

D(FTx, FT 2x) = 0 (2.5)

that is FTx = FT 2x. Note that F is one-to-one, then Tx = T 2x. Therefore, a = Tx
is a fixed point of T .

Case 2. max
{
D(Fx, FTx), D(FTx, FT 2x)

}
= D(Fx, FTx). Then (2.4) be-

comes

D(FTx, FT 2x) ≤
r

K
D(Fx, FTx). (2.6)

Put xn+1 = Txn and yn = FTxn for all n ∈ N where x0 = x. We also have
xn = Tnx and yn = Fxn+1. It follows from (2.6) that

D(yn, yn+1) = D(FTxn, FT
2xn) ≤

r

K
D(Fxn, FTxn) =

r

K
D(yn−1, yn). (2.7)

Using Lemma 1.7, we conclude that {yn} is a Cauchy sequence in the compete
metric-type space X. Then yn converges to z for some z ∈ X. Since F is sequen-
tially convergent, {xn} converges to some a ∈ X and also from the continuity of F ,
{Fxn} converges to Fa. Note that {yn−1} converges to z, then

yn−1 = FTxn−1 = Fxn → Fa = z. (2.8)

Let us prove now that

D(FTx, z) ≤
r

K
max

{
D(Fx, z), D(Fx, FTx)

}
(2.9)

holds for each x 6= a. Indeed, since Fxn → z and FTxn → z and by the continuity
of D, we have

D(Fxn, FTxn) → 0 and D(Fxn, Fx) → D(z, Fx) 6= 0. (2.10)

Then there exists n0 ∈ N such that for all n ≥ n0,

θ(r)D(Fxn, FTxn) < D(Fxn, Fx). (2.11)

From (2.3) and (2.11), we have for such n

D(FTxn, FTx) ≤
r

K
max

{
D(Fxn, Fx), D(Fxn, FTxn), D(Fx, FTx),(2.12)

1
2K

[
D(Fxn, FTx) +D(Fx, FTxn)

]}
.
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Taking the limit as n → ∞ in (2.12) and using (2.10) and the continuity of D,
we get

D(z, FTx)

≤
r

K
max

{
D(z, Fx), D(Fx, FTx),

1
2K

(
D(z, FTx) +D(Fx, z)

)}
≤

r

K
max

{
D(z, Fx), D(Fx, FTx),

1
2K

K
(
D(z, Fx) +D(Fx, FTx)

)
+

1
2K

D(Fx, z)
}

≤
r

K
max

{
D(z, Fx), D(Fx, FTx)

}
.

Hence, we have (2.9) .
For each n ≥ 1, put x = Tn−1a. Therefore,

D(FTna, FTn+1a) ≤
r

K
D(FTn−1a, FTna)

holds for each n ∈ N where FT 0a = z. By induction, we have

D(FTna, FTn+1a) ≤
rn

Kn
D(z, FTa). (2.13)

Now we will prove that

D(FTna, z) ≤ D(FTa, z) (2.14)

holds for all n ≥ 1 by induction. For n = 1 this relation is obvious. Suppose
that it holds for some n. If FTna = z, note that z = Fa and F is one-to-one,
then Tna = a. It implies that FTn+1a = FTa and D(FTn+1a, z) = D(FTa, z). If
FTna 6= z, then from (2.9), (2.13) and the induction hypothesis, we get

D(FTn+1a, z) ≤
r

K
max

{
D(FTna, z), D(FTna, FTn+1a)

}
≤

r

K
max

{
D(FTa, z),

rn

Kn
D(z, FTa)

}
≤

r

K
D(FTa, z)

and that (2.14) is proved.
Now we will prove that a is a fixed point of T . Suppose to the contrary that

Ta 6= a, that is, FTa 6= Fa or equivalently,

FTa 6= z. (2.15)

We consider following two subcases.

Subcase 2.1. 0 ≤ r < bK . That implies θ(r) ≤
1− r

r2
.

We will prove

D(FTna, FTa) ≤
r

K
D(FTa, z) (2.16)

holds for all n ≥ 1 by induction. For n = 1, (2.16) obvious and for n = 2, (2.16)
follows from (2.13). Suppose that (2.16) holds for some n > 2. Then we have

D(z, FTa) ≤ K
[
D(z, FTna) +D(FTna, FTa)

]
≤ K

[
D(z, FTna) +

r

K
D(FTa, z)

]
.

Hence

D(z, FTa) ≤
K

1− r
D(z, FTna). (2.17)
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Since θ(r) ≤
1− r

r2
and by using (2.8), (2.13) and (2.17), we get

θ(r)D(FTna, FTn+1a) ≤
1− r

r2
D(FTna, FTn+1a)

≤
1− r

rn
D(FTna, FTn+1a)

≤
1− r

Kn
D(z, FTa)

≤
1

Kn−1
D(z, FTna)

≤ D(z, FTna)
= D(Fa, FTna).

Assumption (2.3) implies that

D(FTa, FTn+1a) ≤
r

K
max

{
D(Fa, FTna), D(Fa, FTa), D(FTna, FTn+1a),

1
2K

(
D(Fa, FTn+1a) +D(FTna, FTa)

)}
.

Using (2.13), (2.14) and the induction hypothesis, we obtain the last maximum is

equal to D(FTa, z). That is D(FTa, FTn+1a) ≤
r

K
D(FTa, z) and (2.16) is proved

by induction.
From (2.15), we have FTna 6= z for each n ∈ N. If FTna = z for some n ∈ N,

then from (2.16) we get D(z, FTa) = 0. It is a contradiction with (2.15). So
FTna 6= z for each n ∈ N. Hence, (2.9) and (2.13) imply that

D(FTn+1a, z) ≤
r

K
max

{
D(FTna, z), D(FTna, FTn+1a)

}
(2.18)

≤
r

K
max

{
D(FTna, z),

rn

Kn
D(z, FTa)

}
.

Since D(FTa, z) ≤ K
[
D(FTa, FTna) +D(FTna, z)

]
, it follows from (2.16) that

D(FTna, z) ≥
1
K
D(FTa, z)−D(FTa, FTna) ≥

1− r

K
D(FTa, z).

Note that there exists n1 ∈ N such that 1−r ≥ rn for all n ≥ n1 and 0 ≤ r ≤ bK .
For n ≥ n1, we have

D(FTna, z) ≥
rn

K
D(FTa, z) ≥

rn

Kn
D(FTa, z).

Using (2.18), we have

0 ≤ D(FTn+1a, z) ≤
r

K
D(FTna, z) ≤ · · · ≤

( r

K

)n−n1+1

D(FTn1a, z). (2.19)

Taking the limit as n → ∞ in (2.19), we get FTna → z and let again n → ∞

in (2.16), we get D(FTa, z) ≤
r

K
D(FTa, z) that means D(FTa, z) = 0. Therefore,

FTa = z. It is a contradiction with (2.15).

Subcase 2.2. bK ≤ r < 1. That implies θ(r) =
1

K + r
. We will prove there exists

a subsequence {ynj
} of {yn} such that

θ(r)D(Fxnj+1, FTxnj+1) = θ(r)D(ynj
, ynj+1) ≤ D(ynj

, z) (2.20)
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holds for each j ∈ N. If

1
K + r

D(yn−1, yn) > D(yn−1, z) and
1

K + r
D(yn, yn+1) > D(yn, z)

hold for some n ∈ N, then (2.7) we have

D(yn−1, yn) ≤ K
[
D(yn−1, z) +D(z, yn)

]
<

K

K + r

[
D(yn−1, yn) +D(yn, yn+1)

]
≤

K

K + r

[
D(yn−1, yn) +

r

K
D(yn−1, yn)

]
= D(yn−1, yn).

It is impossible. Hence

θ(r)D(yn−1, yn) ≤ D(yn−1, z) or θ(r)D(yn, yn+1) ≤ D(yn, z)

holds for some n ∈ N. In particular

θ(r)D(y2n−1, y2n) ≤ D(y2n−1, z) or θ(r)D(y2n, y2n+1) ≤ D(y2n, z)

holds for all n ∈ N. In other words there exists a subsequence {ynj
} of {yn} that

satisfies (2.20) for each j ∈ N. But the assumption (2.3) implies that

D(FTxnj+1, FTa) (2.21)

≤
r

K
.max

{
D(Fxnj+1, Fa), D(Fxnj+1, FTxnj+1), D(Fa, FTa),

r

2K
[
D(Fxnj+1, FTa) +D(Fa, FTxnj+1)

]}
.

Taking the limit as j →∞ in (2.21), we obtain

D(z, FTa) ≤
r

K
.D(Fa, FTa) =

r

K
D(z, FTa).

It implies D(z, FTa) = 0, that is z = FTa. It is a contradiction with (2.15).
From two above subcases, we get Ta = a, that is a is a fixed point of T .
Finally, we prove that a is a unique fixed point of T . Indeed, if a and b are two

fixed points of T , then (2.9) implies that

D(Fa, Fb) = D(FTa, Fb) ≤
r

K
max

{
D(Fa, Fb), D(Fa, FTa)

}
=

r

K
D(Fa, Fb).

Since
r

K
< 1, we have D(Fa, Fb) = 0, that is Fa = Fb. Also since F is one-to-one,

we get a = b.
(2). It is a direct consequence of (2.8).
(3). From (2.5) and (2.6), we have

D(FTx, FT 2x) ≤
r

K
D(Fx, FTx). (2.22)

Note that the property (P ) follows from (2.22) and Lemma 2.1. We need only prove
T and F have a unique common fixed point. Let a be the unique fixed point of T .
Suppose to the contrary that Fa 6= a. Since F is one-to-one, F 2a 6= Fa. Then

θ(r)D(Fa, FTa) = 0 < D(Fa, F 2a).
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It follows from (2.3) that

D(FTa, FTFa) = D(FTa, F 2Ta) = D(Fa, F 2a) ≤
r

K
M(a, Fa)

where

M(a, Fa)

= max
{
D(Fa, F 2a), D(Fa, FTa), D(F 2a, F 2Ta),

1
2K

[
D(Fa, F 2Ta) +D(F 2a, FTa)

]}
= D(Fa, F 2a).

Therefore,

D(Fa, F 2a) ≤
r

K
D(Fa, F 2a) < D(Fa, F 2a).

It is a contradiction. This proves that a is a unique common fixed point of T
and F . �

Remark 2.3. By choosing F is the identity in Theorem 2.2, we get Theorem 1.1.

From Theorem 2.2, we get following corollaries.

Corollary 2.4. Let (X,D,K) be a complete metric-type space, let T, F : X −→ X

be two maps and let θ = θK : [0, 1) −→
( 1
K + 1

, 1
]

be defined by (2.2) and satisfy

the following conditions

(i) D is continuous in each variable.
(ii) There exists r ∈ [0, 1) such that for each x, y ∈ X,

θ(r)D(Fx, FTx) ≤ D(Fx, Fy) implies D(FTx, FTy) ≤
r

K
D(Fx, Fy). (2.23)

(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

(i) T has a unique fixed point z ∈ X.
(ii) For each x ∈ X, the sequence {FTnx} converges to Fz.
(iii) If TF = FT then T has the property (P ) and F , T have a unique common

fixed point.

Corollary 2.5. Let (X,D,K) be a complete metric-type space, let T, F : X −→ X

be two maps and let θ = θK : [0, 1) −→
( 1
K + 1

, 1
]

be defined by (2.2) and satisfy

the following conditions

(i) D is continuous in each variable.
(ii) There exists r ∈ [0, 1) such that for each x, y ∈ X,

θ(r)D(Fx, FTx) ≤ D(Fx, Fy)

implies D(FTx, FTy) ≤
r

K
max

{
D(Fx, FTx), D(Fy, FTy)

}
. (2.24)

(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

(i) T has a unique fixed point z ∈ X.
(ii) For each x ∈ X, the sequence {FTnx} converges to Fz.
(iii) If TF = FT then T has the property (P ) and F , T have a unique common

fixed point.
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Corollary 2.6. Let (X,D,K) be a complete metric-type space, let T, F : X −→ X

be two maps and let θ = θK : [0, 1) −→
( 1
K + 1

, 1
]

be defined by (2.2) and satisfy

the following conditions

(i) D is continuous in each variable.
(ii) There exists r ∈ [0, 1) such that for each x, y ∈ X,

θ(r)D(Fx, FTx) ≤ D(Fx, Fy)

implies D(FTx, FTy) ≤
r

2K
[
D(Fx, FTy) +D(Fy, FTx)

]
. (2.25)

(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

(i) T has a unique fixed point z ∈ X.
(ii) For each x ∈ X, the sequence {FTnx} converges to Fz.
(iii) If TF = FT then T has the property (P ) and F , T have a unique common

fixed point.

Remark 2.7. Corollary 2.4 is a generalization of [2, Corollary 1], Corollary 2.5
is a generalization of [2, Corollary 2] and Corollary 2.6 is a generalization of [2,
Corollary 3].

The second main result of the paper is as follows.

Theorem 2.8. Let (X,D,K) be a metric-type space where D is continuous and let
T, F : X −→ X be two maps satisfying the conditions

(i) For all x, y ∈ X and x 6= y,

1
1 +K

D(Fx, FTx) < D(Fx, Fy) implies D(FTx, FTy) <
1
K
D(Fx, Fy). (2.26)

(ii) F (X) is compact.
(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

(i) T has a unique fixed point in X.
(ii) If TF = FT then F , T have a unique common fixed point.

Proof. (1). First, denote β = inf{D(Fx, FTx) : x ∈ X} and choose a sequence
{xn} in X such that D(Fxn, FTxn) → β. Since F (X) is compact, so there exist
Fv, Fw ∈ F (X) such that Fxn → Fv and FTxn → Fw. Since F is continuous,
one-to-one and sequentially convergent, we get xn → v and Txn → w. Note that
the continuity of D implies

limD(Fxn, Fw) = limD(Fv, Fw) = limD(Fxn, FTxn) = β.

We will prove β = 0. Suppose to the contrary that β > 0. Then there exists n0 ∈ N
such that for all n ≥ n0, we have

2 +K

2 + 2K
β < D(Fxn, Fw) and D(Fxn, FTxn) <

2 +K

2
β.

Then
1

1 +K
D(Fxn, FTxn) < D(Fxn, Fw) and the assumption (2.26) implies that

D(FTxn, FTw) <
1
K
D(Fxn, Fw). (2.27)
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Taking the limit as n→∞ in (2.27), we obtain D(Fw,FTw) ≤
1
K
β.

If K > 1, then D(Fw,FTw) < β. It is impossible by the definition of β.
If K = 1, then D(Fw,FTw) = β and

1
1 +K

D(Fw,FTw) < D(Fw,FTw).

It follows from (2.26) that

D(FTw,FT 2w) <
1
K
D(Fw,FTw) = β.

It is also impossible by the definition of β.
Hence, in all cases we obtain a contradiction and it follows that β = 0 and so

Fv = Fw. Since F is one-to-one, we have v = w.
Now we prove that T has a fixed point. Suppose to the contrary that Tz 6= z for

all z ∈ X. Since F is one-to-one, we have FTz 6= Fz for all z ∈ X. In particular,
we get

0 <
1

1 +K
D(Fxn, FTxn) < D(Fxn, FTxn).

It follows from (2.26) that D(FTxn, FT
2xn) <

1
K
D(Fxn, FTxn). Therefore,

D(Fv, FT 2xn) ≤ K
[
D(Fv, FTxn) +D(FTxn, FT

2xn)
]

(2.28)
< KD(Fv, FTxn) +D(Fxn, FTxn).

Taking the limit as n→∞ in (2.28), we getD(Fv, FT 2xn) → 0, that is, FT 2xn → Fv.
Suppose that

1
1 +K

D(Fxn, FTxn) ≥ D(Fxn, Fv)

and
1

1 +K
D(FTxn, FT

2xn) ≥ D(FTxn, Fv)

both hold for some n ∈ N. Then

D(Fxn, FTxn) ≤ K
[
D(Fxn, Fv) +D(FTxn, Fv)

]
≤

K

1 +K

[
D(Fxn, FTxn) +D(FTxn, FT

2xn)
]

<
K

1 +K

[
D(Fxn, FTxn) +

1
K
.D(Fxn, FTxn)

]
= D(Fxn, FTxn).

That is impossible. Thus, for each n ∈ N, either

1
1 +K

D(Fxn, FTxn) < D(Fxn, Fv)

or
1

1 +K
D(FTxn, FT

2xn) < D(FTxn, Fv)

holds. It follows from (2.26) that, for each n ∈ N, either

D(FTxn, FTv) <
1
K
D(Fxn, Fv) (2.29)

or

D(FT 2xn, FTv) <
1
K
D(FTxn, Fv) (2.30)
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holds. If (2.29) holds only for finitely many n ∈ N, then (2.32) holds for infinitely
many n ∈ N. Thus, there exists a sequence {nk} such that

D(FT 2xnk
, FTv) <

1
K
D(FTxnk

, Fv) (2.31)

holds for each k ∈ N. If (2.29) holds for infinitely many n ∈ N, then there exists a
sequence {nj} such that

D(FTxnj , FTv) <
1
K
D(Fxnj , Fv) (2.32)

holds for each j ∈ N.
In both cases, taking the limit as k →∞ in (2.31) or j →∞ in (2.32), we obtain

D(Fv, FTv) = 0, that is, Fv = FTv. Since F is one-to-one, we get v = Tv. This is
a contradiction with the assumption that T has no any fixed point.

Finally, we prove the uniqueness of the fixed point. Suppose to the contrary that
y, z are two fixed points of T and z 6= y. Then Fz = FTz and Fy 6= Fz. Therefore,

1
1 +K

D(Fz, FTz) < D(Fz, Fy)

and (2.26) implies that

D(FTz, FTy) <
1
K
D(Fz, Fy) =

1
K
·D(FTz, FTy).

This is impossible since K ≥ 1. Thus T has a unique fixed point in X.
(2). Let v be the unique fixed point of T . Suppose to the contrary that Fv 6= v.

Since F is one-to-one, F 2v 6= Fv. Then

1
1 +K

D(Fv, FTv) = 0 < D(Fv, F 2v).

It follows from (2.26) that

D(FTv, FTFv) = D(FTv, F 2Tv) = D(Fv, F 2v) <
1
K
D(Fv, F 2v) ≤ D(Fv, F 2v).

It is a contradiction. This proves that v is a unique common fixed point of T
and F . �

The following example shows that Theorem 2.2 is a proper generalization of
Theorem 1.1.

Example 2.9. Let X = [0,+∞), let D be the usual metric on R, that is K = 1, and
let T, F be defined by

Tx =
x2

x+ 1
, Fx = ex − 1

for all x ∈ X. We have

D(Tx, T2x) =
x2(2x+ 3)

(2x+ 1)(x+ 1)
D(x, 2x) = x

D(x, Tx) =
x

x+ 1

D(2x, T2x) =
2x

2x+ 1

D(x, T2x) =
∣∣∣2x2 − x

2x+ 1

∣∣∣
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D(2x, Tx) =
x2 + 2x
x+ 1

.

Let the condition (1.2) hold. Since

θ(r).D(x, Tx) = θ(r)
x

x+ 1
≤

x

x+ 1
≤ x = D(x, 2x)

for all x ∈ X, then
D(Tx, T2x) ≤ rM(x, 2x)

where

M(x, 2x) = max
{
x,

x

x+ 1
,

2x
2x+ 1

,
1
2

(∣∣∣2x2 − x

2x+ 1

∣∣∣ +
x2 + 2x
x+ 1

)}
≤
x2 + 2x
x+ 1

.

Then we have
x2(2x+ 3)

(2x+ 1)(x+ 1)
≤ r

x2 + 2x
x+ 1

that is
x(2x+ 3)

(2x+ 1)(x+ 1)
≤ r

x+ 2
x+ 1

for all x ∈ X. Taking the limit as x→ +∞, we get r ≥ 1. It is a contradiction. This
proves that Theorem 1.1 is not applicable to T .

On the other hand, we have

D(FTx, FTy) =
∣∣e x2

x+1 − e
y2

y+1

∣∣∣
D(Fx, Fy) = |ex − ey|.

We consider two following cases.

Case 1. x ≥ y. Then D(FTx, FTy) ≤
1
2
D(Fx, Fy) is equivalent to

2e
x2

x+1 − ex ≤ 2e
y2

y+1 − ey.

Now we shall prove that ϕ(x) = 2e
x2

x+1 − ex is decreasing on [0,+∞). Indeed,
we have

ϕ′(x) = ex
(
2
x2 + 2x
(x+ 1)2

e
−x
x+1 − 1

)
.

Note that ψ(x) = 2
x2 + 2x
(x+ 1)2

e
−x
x+1 − 1 satisfies ψ′(x) = e

−x
x+1

4− 2x2

(x+ 1)4
. It implies that

max
[0,+∞)

ψ(x) = ψ(
√

2) < 0.

Therefore, ϕ′(x) < 0 on [0,+∞). This proves that ϕ(x) is decreasing. Then we have

D(FTx, FTy) <
1
2
D(Fx, Fy) (2.33)

for all x, y ∈ X. This proves that (2.23) holds with r =
1
2
.

Case 2. x < y. Then D(FTx, FTy) ≤
1
2
D(Fx, Fy) is equivalent to

2e
y2

y+1 − ey ≤ 2e
x2

x+1 − ex.

As the same as Case 1, we also get that (2.23) holds with r =
1
2
.



SUZUKI-TYPE FIXED POINT THEOREMS . . . 29

By two above cases, we see that (2.23) holds with r =
1
2
. Note that other

conditions in Corollary 2.4 are also satisfied, then Corollary 2.4 is applicable to T
and F . We see that x = 0 is the unique fixed point of T .

The following example shows that Corollary 2.4 is a proper generalization of [2,
Corollary 1].

Example 2.10. For X and F, T as in Example 2.9, we have

D(Tx, T2x) =
x2(2x+ 3)

(2x+ 1)(x+ 1)
, D(x, 2x) = x.

If the condition in [2, Corollary 1] holds, then
x2(2x+ 3)

(2x+ 1)(x+ 1)
≤ r.x, that is

x(2x+ 3)
(2x+ 1)(x+ 1)

≤ r (2.34)

for all x ∈ X. Taking the limit as x → +∞ in (2.34), we get r ≥ 1. It is a
contradiction. This proves that [2, Corollary 1] is not applicable to T . As in
Example 2.9, Corollary 2.4 is applicable to F and T . Note that x = 0 is the unique
fixed point of T .
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