Journal of Nonlinear Analysis and Optimization Vol. 4, No. 2, (2013), 17-29 ISSN: 1906-9605 http://www.math.sci.nu.ac.th

SUZUKI-TYPE FIXED POINT THEOREMS FOR TWO MAPS ON METRIC-TYPE SPACES

Journal of Nonline<mark>a</mark> Analysis and Optimization : Theory & Applications

NGUYEN VAN DUNG*, NGUYEN THI THANH LY, VO DUC THINH AND NGUYEN TRUNG HIEU

Faculty of Mathematics and Information Technology Teacher Education, Dong Thap University, Cao Lanh City, Dong Thap Province, Viet Nam

ABSTRACT. In this paper, we generalize the Suzuki-type fixed point theorems in [N. Hussain, D. Dorić, Z. Kadelburg, and S. Radenović, *Suzuki-type fixed point results in metric type spaces*, Fixed Point Theory Appl **2012:126** (2012), 1 - 10] for two maps on metric-type spaces. Examples are given to validate the results.

KEYWORDS: Suzuki-type fixed point; metric-type space. **AMS Subject Classification**: Primary 47H10 54H25, Secondary 54D99 54E99.

1. INTRODUCTION AND PRELIMINARIES

In [2], Hussain, Dorić, Kadelburg and Radenović have proved the following theorems. These results are generalizations of Suzuki-type fixed point theorems in [8] and [9].

Theorem 1.1 ([2], Theorem 3). Let (X, D, K) be a complete metric-type space, let $T: X \longrightarrow X$ be a map and let $\theta = \theta_K : [0, 1) \longrightarrow \left(\frac{1}{K+1}, 1\right]$ be defined by $\theta(r) = \theta_K(r) = \begin{cases} 1 & \text{if } 0 \le r \le \frac{\sqrt{5}-1}{2} \\ \frac{1-r}{r^2} & \text{if } \frac{\sqrt{5}-1}{2} < r \le b_K \end{cases}$

$$\left(\begin{array}{cc} \frac{r}{1} & \text{if } b_K < r < 1 \\ \frac{r}{K+r} & \text{if } b_K < r < 1 \end{array}\right)$$

where $b_K = \frac{1 - K + \sqrt{1 + 6K + K^2}}{4}$ is the positive solution of $\frac{1 - r}{r^2} = \frac{1}{K + r}$, satisfying the following conditions

This work is discussed at The Dong Thap Seminar on Mathematical Analysis. * *Corresponding author.*

Email address : nvdung@dthu.edu.vn (Nguyen Van Dung); nguyenthithanhly@dthu.edu.vn (Nguyen Thi Thanh Ly); vdthinh@dthu.edu.vn (Vo Duc Thinh); ngtrunghieu@dthu.edu.vn (Nguyen Trung Hieu). Article history : Received 19 March 2013. Accepted 12 August 2013.

- (i) D is continuous in each variable.
- (ii) There exists $r \in [0, 1)$ such that for each $x, y \in X$,

$$\theta(r)D(x,Tx) \le D(x,y) \text{ implies } D(Tx,Ty) \le \frac{r}{K}M(x,y)$$
 (1.1)

where

$$M(x,y) = \max \Big\{ D(x,y), D(x,Tx), D(y,Ty), \frac{1}{2K} [D(x,Ty) + D(y,Tx)] \Big\}.$$

Then we have

- (i) *T* has a unique fixed point $z \in X$.
- (ii) For each $x \in X$, the sequence $\{T^n x\}$ converges to z.
- (iii) T has the property (P).

Theorem 1.2 ([2], Theorem 4). Let (X, D, K) be a metric-type space and let T: $X \longrightarrow X$ be a map satisfying the following conditions

- (i) X is compact.
- (ii) D is continuous.
- (iii) For all $x, y \in X$ and $x \neq y$,

$$\frac{1}{1+K}D(x,Tx) < D(x,y) \text{ implies } D(Tx,Ty) < \frac{1}{K}D(x,y).$$
(1.2)

Then T has a unique fixed point in X.

In this paper, we extend the main results in [2] for two maps on metric-type spaces. Examples are given to validate the results.

First we recall some notions and lemmas which will be useful in what follows.

Definition 1.3 ([6], Definition 6). Let X be a nonempty set, let $K \ge 1$ be a real number and let $D: X \times X \longrightarrow [0, \infty)$ satisfy the following properties

- (i) D(x, y) = 0 if and only if x = y.
- (ii) D(x,y) = D(y,x) for all $x, y \in X$;
- (iii) $D(x,z) \leq K[D(x,y) + D(y,z)]$ for all $x, y, z \in X$.

Then (X, D, K) is called a *metric-type space*.

Note that a metric-type space was introduced and studied under the name of a *b*-metric space by Czerwik in [1]. Moreover, in [5], Khamsi introduced another definition of a metric-type space with a bit difference, where the condition (3) in Definition 1.3 is replaced by

 $D(x,z) \leq K[D(x,y_1) + \cdots + D(y_n,z)]$ for all $x, y_1, \cdots, y_n, z \in X$.

Definition 1.4 ([6], Definition 7). Let (X, D, K) be a metric-type space.

- (i) A sequence $\{x_n\}$ is called *convergent* to $x \in X$ if $\lim_{n \to \infty} D(x_n, x) = 0$. (ii) A sequence $\{x_n\}$ is called *Cauchy* if $\lim_{n,m \to \infty} D(x_n, x_m) = 0$.
- (iii) (X, D, K) is called *complete* if every Cauchy sequence is a convergent sequence.

Definition 1.5 ([3], page 2). A map $T: X \to X$ is called to have the *property* (*P*) if $\mathcal{F}(T) = \mathcal{F}(T^n)$ for all $n \in \mathbb{N}$, where $\mathcal{F}(T) = \{x \in X : Tx = x\}$.

Definition 1.6 ([7], Definition 1.2). Let (X, d) be a metric space and $T: X \longrightarrow X$ be a map. T is called sequentially convergent if $\{y_n\}$ is convergent provided $\{Ty_n\}$ is convergent.

18

Lemma 1.7 ([4], Lemma 3.1). Let $\{y_n\}$ be a sequence in a metric-type space (X, D, K) such that

$$D(y_n, y_{n+1}) \le \lambda D(y_{n-1}, y_n) \tag{1.3}$$

for some $\lambda \in [0, \frac{1}{K})$ and all $n \in \mathbb{N}$. Then $\{y_n\}$ is a Cauchy sequence in (X, D, K).

2. MAIN RESULTS

The following result is a sufficient condition for a map on a metric-type space having the property (P). If K = 1, this result becomes [3, Theorem 1.1].

Lemma 2.1. Let (X, D, K) be a metric-type space and $T : X \longrightarrow X$ be a map such that

$$D(Tx, T^2x) \le \lambda D(x, Tx) \tag{2.1}$$

for some $0 \le \lambda < 1$ and all $x \in X$. Then *T* has property (*P*).

Proof. If $u \in \mathcal{F}(T^n)$, that is, $T^n u = u$, then from (2.1) we have

$$D(u, Tu) = D(TT^{n-1}u, T^2T^{n-1}u) \le \lambda D(T^{n-1}u, TT^{n-1}u) \le \dots \le \lambda^n D(u, Tu).$$

Since $0 \leq \lambda^n < 1$, we get D(u, Tu) = 0, that is, $u \in \mathcal{F}(T)$.

If $u \in \mathcal{F}(T)$, that is Tu = u, then

$$D(u, T^n u) = D(u, T^{n-1}u) = \dots = D(u, Tu) = 0.$$

Then $T^n u = u$, that is $u \in \mathcal{F}(T^n)$. This proves that T has property (P).

The first main result of the paper is as follows.

Theorem 2.2. Let (X, D, K) be a complete metric-type space, let $T, F : X \longrightarrow X$ be two maps and let $\theta = \theta_K : [0, 1) \longrightarrow \left(\frac{1}{K+1}, 1\right]$ be defined by

$$\theta(r) = \theta_K(r) = \begin{cases} 1 & \text{if } 0 \le r \le \frac{\sqrt{5} - 1}{2} \\ \frac{1 - r}{r^2} & \text{if } \frac{\sqrt{5} - 1}{2} < r \le b_K \\ \frac{1}{K + r} & \text{if } b_K < r < 1 \end{cases}$$
(2.2)

where $b_K = \frac{1-K+\sqrt{1+6K+K^2}}{4}$ is the positive solution of $\frac{1-r}{r^2} = \frac{1}{K+r}$, satisfying the following conditions

(i) D is continuous in each variable.

(ii) There exists $r \in [0, 1)$ such that for each $x, y \in X$

$$\theta(r)D(Fx,FTx) \le D(Fx,Fy) \text{ implies } D(FTx,FTy) \le \frac{r}{K}M(x,y)$$
 (2.3)

where

$$M(x,y) = \max\left\{D(Fx,Fy), D(Fx,FTx), D(Fy,FTy), \frac{1}{2K}[D(Fx,FTy) + D(Fy,FTx)]\right\}$$

(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

- (i) *T* has a unique fixed point $a \in X$.
- (ii) For each $x \in X$, the sequence $\{FT^nx\}$ converges to Fa.
- (iii) If TF = FT, then T has the property (P) and F, T have a unique common fixed point.

Proof. (1). For each $x \in X$, since $\theta(r) \le 1$, we have $\theta(r)D(Fx,FTx) \le D(Fx,FTx)$. It follows from (2.3) that

$$D(FTx, FT^{2}x)$$

$$\leq \frac{r}{K} \max\left\{D(Fx, FTx), D(Fx, FTx), D(FTx, FT^{2}x), \frac{1}{2K}[D(Fx, FT^{2}x) + D(FTx, FTx)]\right\}$$

$$\leq \frac{r}{K} \max\left\{D(Fx, FTx), D(FTx, FT^{2}x), \frac{1}{2K}K[D(Fx, FTx) + D(FTx, FT^{2}x)]\right\}$$

$$= \frac{r}{K} \max\left\{D(Fx, FTx), D(FTx, FT^{2}x)\right\}.$$
We are the full of the statements

We consider following two cases.

Case 1. $\max \left\{ D(Fx, FTx), D(FTx, FT^2x) \right\} = D(FTx, FT^2x).$ Then (2.4) be-

comes
$$D(FTx, FT^2x) \le \frac{1}{K}D(FTx, FT^2x)$$
. Since $\frac{1}{K} < 1$, we have $D(FTx, FT^2x) = 0$

that is $FTx = FT^2x$. Note that F is one-to-one, then $Tx = T^2x$. Therefore, a = Tx is a fixed point of T.

Case 2. $\max\left\{D(Fx,FTx),D(FTx,FT^2x)\right\} = D(Fx,FTx)$. Then (2.4) becomes

$$D(FTx, FT^{2}x) \le \frac{r}{K}D(Fx, FTx).$$
(2.6)

(2.5)

Put $x_{n+1} = Tx_n$ and $y_n = FTx_n$ for all $n \in \mathbb{N}$ where $x_0 = x$. We also have $x_n = T^n x$ and $y_n = Fx_{n+1}$. It follows from (2.6) that

$$D(y_n, y_{n+1}) = D(FTx_n, FT^2x_n) \le \frac{r}{K}D(Fx_n, FTx_n) = \frac{r}{K}D(y_{n-1}, y_n).$$
 (2.7)

Using Lemma 1.7, we conclude that $\{y_n\}$ is a Cauchy sequence in the compete metric-type space X. Then y_n converges to z for some $z \in X$. Since F is sequentially convergent, $\{x_n\}$ converges to some $a \in X$ and also from the continuity of F, $\{Fx_n\}$ converges to Fa. Note that $\{y_{n-1}\}$ converges to z, then

$$y_{n-1} = FTx_{n-1} = Fx_n \to Fa = z.$$
 (2.8)

Let us prove now that

$$D(FTx,z) \le \frac{r}{K} \max\left\{D(Fx,z), D(Fx,FTx)\right\}$$
(2.9)

holds for each $x \neq a$. Indeed, since $Fx_n \rightarrow z$ and $FTx_n \rightarrow z$ and by the continuity of D, we have

$$D(Fx_n, FTx_n) \to 0 \text{ and } D(Fx_n, Fx) \to D(z, Fx) \neq 0.$$
 (2.10)

Then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$,

$$\theta(r)D(Fx_n, FTx_n) < D(Fx_n, Fx).$$
(2.11)

From (2.3) and (2.11), we have for such n

$$D(FTx_n, FTx) \leq \frac{r}{K} \max \left\{ D(Fx_n, Fx), D(Fx_n, FTx_n), D(Fx, FTx) (2.12) \\ \frac{1}{2K} [D(Fx_n, FTx) + D(Fx, FTx_n)] \right\}.$$

20

Taking the limit as $n \to \infty$ in (2.12) and using (2.10) and the continuity of D, we get

$$D(z, F'Tx) \leq \frac{r}{K} \max\left\{D(z, Fx), D(Fx, FTx), \frac{1}{2K}(D(z, FTx) + D(Fx, z))\right\}$$

$$\leq \frac{r}{K} \max\left\{D(z, Fx), D(Fx, FTx), \frac{1}{2K}K(D(z, Fx) + D(Fx, FTx)) + \frac{1}{2K}D(Fx, z)\right\}$$

$$\leq \frac{r}{K} \max\left\{D(z, Fx), D(Fx, FTx)\right\}.$$

Hence, we have (2.9).

For each $n \ge 1$, put $x = T^{n-1}a$. Therefore,

$$D(FT^{n}a, FT^{n+1}a) \le \frac{r}{K}D(FT^{n-1}a, FT^{n}a)$$

holds for each $n \in \mathbb{N}$ where $FT^0a = z$. By induction, we have

$$D(FT^n a, FT^{n+1}a) \le \frac{r^n}{K^n} D(z, FTa).$$
(2.13)

Now we will prove that

$$D(FT^n a, z) \le D(FTa, z) \tag{2.14}$$

holds for all $n \ge 1$ by induction. For n = 1 this relation is obvious. Suppose that it holds for some n. If $FT^n a = z$, note that z = Fa and F is one-to-one, then $T^n a = a$. It implies that $FT^{n+1}a = FTa$ and $D(FT^{n+1}a, z) = D(FTa, z)$. If $FT^n a \ne z$, then from (2.9), (2.13) and the induction hypothesis, we get

$$D(FT^{n+1}a, z) \leq \frac{r}{K} \max\left\{D(FT^n a, z), D(FT^n a, FT^{n+1}a)\right\}$$
$$\leq \frac{r}{K} \max\left\{D(FTa, z), \frac{r^n}{K^n}D(z, FTa)\right\}$$
$$\leq \frac{r}{K}D(FTa, z)$$

and that (2.14) is proved.

Now we will prove that a is a fixed point of T. Suppose to the contrary that $Ta \neq a$, that is, $FTa \neq Fa$ or equivalently,

$$FTa \neq z.$$
 (2.15)

We consider following two subcases.

Subcase 2.1. $0 \le r < b_K$. That implies $\theta(r) \le \frac{1-r}{r^2}$. We will prove

$$D(FT^{n}a, FTa) \le \frac{r}{K}D(FTa, z)$$
(2.16)

holds for all $n \ge 1$ by induction. For n = 1, (2.16) obvious and for n = 2, (2.16) follows from (2.13). Suppose that (2.16) holds for some n > 2. Then we have

$$D(z,FTa) \le K \left[D(z,FT^n a) + D(FT^n a,FTa) \right] \le K \left[D(z,FT^n a) + \frac{\tau}{K} D(FTa,z) \right].$$

Hence

$$D(z, FTa) \leq \frac{K}{1-r}D(z, FT^{n}a).$$
(2.17)

Since $\theta(r) \leq \frac{1-r}{r^2}$ and by using (2.8), (2.13) and (2.17), we get

$$\begin{aligned} \theta(r)D(FT^{n}a,FT^{n+1}a) &\leq \frac{1-r}{r^{2}}D(FT^{n}a,FT^{n+1}a) \\ &\leq \frac{1-r}{r^{n}}D(FT^{n}a,FT^{n+1}a) \\ &\leq \frac{1-r}{K^{n}}D(z,FTa) \\ &\leq \frac{1}{K^{n-1}}D(z,FT^{n}a) \\ &\leq D(z,FT^{n}a) \\ &= D(Fa,FT^{n}a). \end{aligned}$$

Assumption (2.3) implies that

$$D(FTa, FT^{n+1}a) \leq \frac{r}{K} \max\left\{ D(Fa, FT^n a), D(Fa, FTa), D(FT^n a, FT^{n+1}a), \frac{1}{2K} (D(Fa, FT^{n+1}a) + D(FT^n a, FTa)) \right\}.$$

Using (2.13), (2.14) and the induction hypothesis, we obtain the last maximum is equal to D(FTa, z). That is $D(FTa, FT^{n+1}a) \leq \frac{r}{K}D(FTa, z)$ and (2.16) is proved by induction.

From (2.15), we have $FT^n a \neq z$ for each $n \in \mathbb{N}$. If $FT^n a = z$ for some $n \in \mathbb{N}$, then from (2.16) we get D(z, FTa) = 0. It is a contradiction with (2.15). So $FT^n a \neq z$ for each $n \in \mathbb{N}$. Hence, (2.9) and (2.13) imply that

$$D(FT^{n+1}a, z) \leq \frac{r}{K} \max\left\{D(FT^{n}a, z), D(FT^{n}a, FT^{n+1}a)\right\}$$

$$\leq \frac{r}{K} \max\left\{D(FT^{n}a, z), \frac{r^{n}}{K^{n}}D(z, FTa)\right\}.$$
(2.18)

Since $D(FTa, z) \leq K[D(FTa, FT^na) + D(FT^na, z)]$, it follows from (2.16) that

$$D(FT^n a, z) \ge \frac{1}{K} D(FTa, z) - D(FTa, FT^n a) \ge \frac{1-r}{K} D(FTa, z).$$

Note that there exists $n_1 \in \mathbb{N}$ such that $1 - r \ge r^n$ for all $n \ge n_1$ and $0 \le r \le b_K$. For $n \ge n_1$, we have

$$D(FT^n a, z) \ge \frac{r^n}{K} D(FTa, z) \ge \frac{r^n}{K^n} D(FTa, z).$$

Using (2.18), we have

$$0 \le D(FT^{n+1}a, z) \le \frac{r}{K} D(FT^n a, z) \le \dots \le \left(\frac{r}{K}\right)^{n-n_1+1} D(FT^{n_1}a, z).$$
 (2.19)

Taking the limit as $n \to \infty$ in (2.19), we get $FT^n a \to z$ and let again $n \to \infty$ in (2.16), we get $D(FTa, z) \leq \frac{r}{K}D(FTa, z)$ that means D(FTa, z) = 0. Therefore, FTa = z. It is a contradiction with (2.15).

Subcase 2.2. $b_K \leq r < 1$. That implies $\theta(r) = \frac{1}{K+r}$. We will prove there exists a subsequence $\{y_{n_j}\}$ of $\{y_n\}$ such that

$$\theta(r)D(Fx_{n_j+1}, FTx_{n_j+1}) = \theta(r)D(y_{n_j}, y_{n_j+1}) \le D(y_{n_j}, z)$$
(2.20)

holds for each $j \in \mathbb{N}$. If

$$\frac{1}{K+r}D(y_{n-1}, y_n) > D(y_{n-1}, z) \text{ and } \frac{1}{K+r}D(y_n, y_{n+1}) > D(y_n, z)$$

hold for some $n \in \mathbb{N}$, then (2.7) we have

$$D(y_{n-1}, y_n) \leq K [D(y_{n-1}, z) + D(z, y_n)] < \frac{K}{K+r} [D(y_{n-1}, y_n) + D(y_n, y_{n+1})] \leq \frac{K}{K+r} [D(y_{n-1}, y_n) + \frac{r}{K} D(y_{n-1}, y_n)] = D(y_{n-1}, y_n).$$

It is impossible. Hence

$$\theta(r)D(y_{n-1}, y_n) \le D(y_{n-1}, z) \text{ or } \theta(r)D(y_n, y_{n+1}) \le D(y_n, z)$$

holds for some $n \in \mathbb{N}$. In particular

$$\theta(r)D(y_{2n-1}, y_{2n}) \le D(y_{2n-1}, z) \text{ or } \theta(r)D(y_{2n}, y_{2n+1}) \le D(y_{2n}, z)$$

holds for all $n \in \mathbb{N}$. In other words there exists a subsequence $\{y_{n_j}\}$ of $\{y_n\}$ that satisfies (2.20) for each $j \in \mathbb{N}$. But the assumption (2.3) implies that

$$D(FTx_{n_{j}+1}, FTa)$$

$$\leq \frac{r}{K} \cdot \max \left\{ D(Fx_{n_{j}+1}, Fa), D(Fx_{n_{j}+1}, FTx_{n_{j}+1}), D(Fa, FTa), \\ \frac{r}{2K} [D(Fx_{n_{j}+1}, FTa) + D(Fa, FTx_{n_{j}+1})] \right\}.$$
(2.21)

Taking the limit as $j \to \infty$ in (2.21), we obtain

$$D(z, FTa) \le \frac{r}{K} \cdot D(Fa, FTa) = \frac{r}{K} D(z, FTa).$$

It implies D(z, FTa) = 0, that is z = FTa. It is a contradiction with (2.15).

From two above subcases, we get Ta = a, that is a fixed point of T.

Finally, we prove that a is a unique fixed point of T. Indeed, if a and b are two fixed points of T, then (2.9) implies that

$$D(Fa, Fb) = D(FTa, Fb) \le \frac{r}{K} \max\left\{D(Fa, Fb), D(Fa, FTa)\right\} = \frac{r}{K}D(Fa, Fb).$$

Since $\frac{r}{K} < 1$, we have D(Fa, Fb) = 0, that is Fa = Fb. Also since F is one-to-one, we get a = b.

(2). It is a direct consequence of (2.8).

(3). From (2.5) and (2.6), we have

$$D(FTx, FT^{2}x) \leq \frac{r}{K}D(Fx, FTx).$$
(2.22)

Note that the property (P) follows from (2.22) and Lemma 2.1. We need only prove T and F have a unique common fixed point. Let a be the unique fixed point of T. Suppose to the contrary that $Fa \neq a$. Since F is one-to-one, $F^2a \neq Fa$. Then

$$\theta(r)D(Fa, FTa) = 0 < D(Fa, F^2a).$$

It follows from (2.3) that

M(a, Fa)

$$D(FTa, FTFa) = D(FTa, F^2Ta) = D(Fa, F^2a) \le \frac{r}{K}M(a, Fa)$$

where

$$= \max \left\{ D(Fa, F^2a), D(Fa, FTa), D(F^2a, F^2Ta), \frac{1}{2K} [D(Fa, F^2Ta) + D(F^2a, FTa)] \right\}$$

= $D(Fa, F^2a).$

Therefore,

$$D(Fa, F^2a) \leq \frac{r}{K}D(Fa, F^2a) < D(Fa, F^2a).$$

It is a contradiction. This proves that a is a unique common fixed point of T and F.

Remark 2.3. By choosing F is the identity in Theorem 2.2, we get Theorem 1.1.

From Theorem 2.2, we get following corollaries.

Corollary 2.4. Let (X, D, K) be a complete metric-type space, let $T, F : X \longrightarrow X$ be two maps and let $\theta = \theta_K : [0, 1) \longrightarrow \left(\frac{1}{K+1}, 1\right]$ be defined by (2.2) and satisfy the following conditions

- (i) D is continuous in each variable.
- (ii) There exists $r \in [0,1)$ such that for each $x, y \in X$,

$$\theta(r)D(Fx,FTx) \le D(Fx,Fy) \text{ implies } D(FTx,FTy) \le \frac{r}{K}D(Fx,Fy).$$
 (2.23)

(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

- (i) *T* has a unique fixed point $z \in X$.
- (ii) For each $x \in X$, the sequence $\{FT^nx\}$ converges to Fz.
- (iii) If TF = FT then T has the property (P) and F, T have a unique common *fixed point.*

Corollary 2.5. Let (X, D, K) be a complete metric-type space, let $T, F : X \longrightarrow X$

be two maps and let $\theta = \theta_K : [0,1) \longrightarrow \left(\frac{1}{K+1},1\right]$ be defined by (2.2) and satisfy the following conditions

- (i) D is continuous in each variable.
- (ii) There exists $r \in [0,1)$ such that for each $x, y \in X$,

$$\theta(r)D(Fx,FTx) \le D(Fx,Fy)$$

implies
$$D(FTx, FTy) \le \frac{r}{K} \max\left\{D(Fx, FTx), D(Fy, FTy)\right\}.$$
 (2.24)

(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

- (i) *T* has a unique fixed point $z \in X$.
- (ii) For each $x \in X$, the sequence $\{FT^nx\}$ converges to Fz.
- (iii) If TF = FT then T has the property (P) and F, T have a unique common fixed point.

 24

Corollary 2.6. Let (X, D, K) be a complete metric-type space, let $T, F : X \longrightarrow X$ be two maps and let $\theta = \theta_K : [0, 1) \longrightarrow \left(\frac{1}{K+1}, 1\right]$ be defined by (2.2) and satisfy the following conditions

- (i) D is continuous in each variable.
- (ii) There exists $r \in [0, 1)$ such that for each $x, y \in X$,

$$\theta(r)D(Fx,FTx) \le D(Fx,Fy)$$

implies $D(FTx,FTy) \le \frac{r}{2K} [D(Fx,FTy) + D(Fy,FTx)].$ (2.25)

(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

- (i) *T* has a unique fixed point $z \in X$.
- (ii) For each $x \in X$, the sequence $\{FT^nx\}$ converges to Fz.
- (iii) If TF = FT then T has the property (P) and F, T have a unique common *fixed point*.

Remark 2.7. Corollary 2.4 is a generalization of [2, Corollary 1], Corollary 2.5 is a generalization of [2, Corollary 2] and Corollary 2.6 is a generalization of [2, Corollary 3].

The second main result of the paper is as follows.

Theorem 2.8. Let (X, D, K) be a metric-type space where D is continuous and let $T, F : X \longrightarrow X$ be two maps satisfying the conditions

(i) For all $x, y \in X$ and $x \neq y$,

$$\frac{1}{1+K}D(Fx,FTx) < D(Fx,Fy) \text{ implies } D(FTx,FTy) < \frac{1}{K}D(Fx,Fy).$$
 (2.26)

(ii) F(X) is compact.

(iii) F is one-to-one, continuous and sequentially convergent.

Then we have

- (i) T has a unique fixed point in X.
- (ii) If TF = FT then F, T have a unique common fixed point.

Proof. (1). First, denote $\beta = \inf\{D(Fx, FTx) : x \in X\}$ and choose a sequence $\{x_n\}$ in X such that $D(Fx_n, FTx_n) \to \beta$. Since F(X) is compact, so there exist $Fv, Fw \in F(X)$ such that $Fx_n \to Fv$ and $FTx_n \to Fw$. Since F is continuous, one-to-one and sequentially convergent, we get $x_n \to v$ and $Tx_n \to w$. Note that the continuity of D implies

$$\lim D(Fx_n, Fw) = \lim D(Fv, Fw) = \lim D(Fx_n, FTx_n) = \beta.$$

We will prove $\beta = 0$. Suppose to the contrary that $\beta > 0$. Then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, we have

$$\frac{2+K}{2+2K}\beta < D(Fx_n,Fw) \text{ and } D(Fx_n,FTx_n) < \frac{2+K}{2}\beta.$$

Then $\frac{1}{1+K}D(Fx_n, FTx_n) < D(Fx_n, Fw)$ and the assumption (2.26) implies that

$$D(FTx_n, FTw) < \frac{1}{K}D(Fx_n, Fw).$$
(2.27)

Taking the limit as $n \to \infty$ in (2.27), we obtain $D(Fw, FTw) \le \frac{1}{K}\beta$. If K > 1, then $D(Fw, FTw) < \beta$. It is impossible by the definition of β .

If K = 1, then $D(Fw, FTw) = \beta$ and

$$\frac{1}{1+K}D(Fw,FTw) < D(Fw,FTw).$$

It follows from (2.26) that

$$D(FTw, FT^2w) < \frac{1}{K}D(Fw, FTw) = \beta.$$

It is also impossible by the definition of β .

Hence, in all cases we obtain a contradiction and it follows that $\beta = 0$ and so Fv = Fw. Since F is one-to-one, we have v = w.

Now we prove that T has a fixed point. Suppose to the contrary that $Tz \neq z$ for all $z \in X$. Since F is one-to-one, we have $FTz \neq Fz$ for all $z \in X$. In particular, we get

$$0 < \frac{1}{1+K}D(Fx_n, FTx_n) < D(Fx_n, FTx_n).$$

It follows from (2.26) that $D(FTx_n, FT^2x_n) < \frac{1}{K}D(Fx_n, FTx_n)$. Therefore,

$$D(Fv, FT^{2}x_{n}) \leq K[D(Fv, FTx_{n}) + D(FTx_{n}, FT^{2}x_{n})]$$

$$< KD(Fv, FTx_{n}) + D(Fx_{n}, FTx_{n}).$$
(2.28)

Taking the limit as $n \to \infty$ in (2.28), we get $D(Fv, FT^2x_n) \to 0$, that is, $FT^2x_n \to Fv$. Suppose that

$$\frac{1}{1+K}D(Fx_n, FTx_n) \ge D(Fx_n, Fv)$$

and

$$\frac{1}{1+K}D(FTx_n, FT^2x_n) \ge D(FTx_n, Fv)$$

both hold for some $n \in \mathbb{N}$. Then

$$D(Fx_n, FTx_n) \leq K [D(Fx_n, Fv) + D(FTx_n, Fv)]$$

$$\leq \frac{K}{1+K} [D(Fx_n, FTx_n) + D(FTx_n, FT^2x_n)]$$

$$< \frac{K}{1+K} [D(Fx_n, FTx_n) + \frac{1}{K} D(Fx_n, FTx_n)]$$

$$= D(Fx_n, FTx_n).$$

That is impossible. Thus, for each $n \in \mathbb{N}$, either

$$\frac{1}{1+K}D(Fx_n, FTx_n) < D(Fx_n, Fv)$$

or

$$\frac{1}{1+K}D(FTx_n, FT^2x_n) < D(FTx_n, Fv)$$

holds. It follows from (2.26) that, for each $n \in \mathbb{N}$, either

$$D(FTx_n, FTv) < \frac{1}{K}D(Fx_n, Fv)$$
(2.29)

or

$$D(FT^2x_n, FTv) < \frac{1}{K}D(FTx_n, Fv)$$
(2.30)

holds. If (2.29) holds only for finitely many $n \in \mathbb{N}$, then (2.32) holds for infinitely many $n \in \mathbb{N}$. Thus, there exists a sequence $\{n_k\}$ such that

$$D(FT^2x_{n_k}, FTv) < \frac{1}{K}D(FTx_{n_k}, Fv)$$
(2.31)

holds for each $k \in \mathbb{N}$. If (2.29) holds for infinitely many $n \in \mathbb{N}$, then there exists a sequence $\{n_i\}$ such that

$$D(FTx_{n_j}, FTv) < \frac{1}{K}D(Fx_{n_j}, Fv)$$
(2.32)

holds for each $j \in \mathbb{N}$.

In both cases, taking the limit as $k \to \infty$ in (2.31) or $j \to \infty$ in (2.32), we obtain D(Fv, FTv) = 0, that is, Fv = FTv. Since F is one-to-one, we get v = Tv. This is a contradiction with the assumption that T has no any fixed point.

Finally, we prove the uniqueness of the fixed point. Suppose to the contrary that y, z are two fixed points of T and $z \neq y$. Then Fz = FTz and $Fy \neq Fz$. Therefore,

$$\frac{1}{1+K}D(Fz,FTz) < D(Fz,Fy)$$

and (2.26) implies that

$$D(FTz, FTy) < \frac{1}{K}D(Fz, Fy) = \frac{1}{K} \cdot D(FTz, FTy).$$

This is impossible since $K \ge 1$. Thus *T* has a unique fixed point in *X*.

(2). Let v be the unique fixed point of T. Suppose to the contrary that $Fv \neq v$. Since F is one-to-one, $F^2v \neq Fv$. Then

$$\frac{1}{1+K}D(Fv,FTv) = 0 < D(Fv,F^2v).$$

It follows from (2.26) that

$$D(FTv, FTFv) = D(FTv, F^{2}Tv) = D(Fv, F^{2}v) < \frac{1}{K}D(Fv, F^{2}v) \le D(Fv, F^{2}v).$$

It is a contradiction. This proves that v is a unique common fixed point of T and F.

The following example shows that Theorem 2.2 is a proper generalization of Theorem 1.1.

Example 2.9. Let $X = [0, +\infty)$, let D be the usual metric on \mathbb{R} , that is K = 1, and let T, F be defined by

$$Tx = \frac{x^2}{x+1}, Fx = e^x - 1$$

for all $x \in X$. We have

$$D(Tx, T2x) = \frac{x^2(2x+3)}{(2x+1)(x+1)}$$
$$D(x, 2x) = x$$
$$D(x, Tx) = \frac{x}{x+1}$$
$$D(2x, T2x) = \frac{2x}{2x+1}$$
$$D(x, T2x) = \left|\frac{2x^2 - x}{2x+1}\right|$$

$$D(2x,Tx) \quad = \quad \frac{x^2 + 2x}{x+1}.$$

Let the condition (1.2) hold. Since

$$\theta(r).D(x,Tx) = \theta(r)\frac{x}{x+1} \le \frac{x}{x+1} \le x = D(x,2x)$$

for all $x \in X$, then

$$D(Tx, T2x) \le rM(x, 2x)$$

where

$$M(x,2x) = \max\left\{x, \frac{x}{x+1}, \frac{2x}{2x+1}, \frac{1}{2}\left(\left|\frac{2x^2-x}{2x+1}\right| + \frac{x^2+2x}{x+1}\right)\right\} \le \frac{x^2+2x}{x+1}.$$

Then we have

$$\frac{x^2(2x+3)}{(2x+1)(x+1)} \le r\frac{x^2+2x}{x+1}$$

that is

$$\frac{x(2x+3)}{(2x+1)(x+1)} \le r\frac{x+2}{x+1}$$

for all $x \in X$. Taking the limit as $x \to +\infty$, we get $r \ge 1$. It is a contradiction. This proves that Theorem 1.1 is not applicable to T.

On the other hand, we have

$$D(FTx, FTy) = \left| e^{\frac{x^2}{x+1}} - e^{\frac{y^2}{y+1}} \right|$$
$$D(Fx, Fy) = \left| e^x - e^y \right|.$$

We consider two following cases.

Case 1. $x \ge y$. Then $D(FTx, FTy) \le \frac{1}{2}D(Fx, Fy)$ is equivalent to

$$2e^{\frac{x^2}{x+1}} - e^x \le 2e^{\frac{y^2}{y+1}} - e^y.$$

Now we shall prove that $\varphi(x) = 2e^{\frac{x^2}{x+1}} - e^x$ is decreasing on $[0, +\infty)$. Indeed, we have

$$\varphi'(x) = e^x \Big(2 \frac{x^2 + 2x}{(x+1)^2} e^{\frac{-x}{x+1}} - 1 \Big).$$

Note that $\psi(x) = 2 \frac{x^2 + 2x}{(x+1)^2} e^{\frac{-x}{x+1}} - 1$ satisfies $\psi'(x) = e^{\frac{-x}{x+1}} \frac{4 - 2x^2}{(x+1)^4}$. It implies that

$$\max_{[0,+\infty)}\psi(x) = \psi(\sqrt{2}) < 0$$

Therefore, $\varphi'(x) < 0$ on $[0, +\infty)$. This proves that $\varphi(x)$ is decreasing. Then we have

$$D(FTx, FTy) < \frac{1}{2}D(Fx, Fy)$$
(2.33)

for all $x, y \in X$. This proves that (2.23) holds with $r = \frac{1}{2}$.

Case 2. x < y. Then $D(FTx, FTy) \le \frac{1}{2}D(Fx, Fy)$ is equivalent to

$$2e^{\frac{y^2}{y+1}} - e^y \le 2e^{\frac{x^2}{x+1}} - e^x.$$

As the same as Case 1, we also get that (2.23) holds with $r = \frac{1}{2}$.

 28

By two above cases, we see that (2.23) holds with $r = \frac{1}{2}$. Note that other conditions in Corollary 2.4 are also satisfied, then Corollary 2.4 is applicable to T and F. We see that x = 0 is the unique fixed point of T.

The following example shows that Corollary 2.4 is a proper generalization of [2, Corollary 1].

Example 2.10. For *X* and *F*, *T* as in Example 2.9, we have

$$D(Tx, T2x) = \frac{x^2(2x+3)}{(2x+1)(x+1)}, D(x, 2x) = x$$

If the condition in [2, Corollary 1] holds, then $\frac{x^2(2x+3)}{(2x+1)(x+1)} \leq r.x$, that is

$$\frac{x(2x+3)}{(2x+1)(x+1)} \le r \tag{2.34}$$

for all $x \in X$. Taking the limit as $x \to +\infty$ in (2.34), we get $r \ge 1$. It is a contradiction. This proves that [2, Corollary 1] is not applicable to *T*. As in Example 2.9, Corollary 2.4 is applicable to *F* and *T*. Note that x = 0 is the unique fixed point of *T*.

ACKNOWLEDGEMENTS

The authors would like to thank the referee for valuable comments.

References

- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1993), no. 1, 5 11.
- N. Hussain, D. Dorić, Z. Kadelburg, and S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl. 2012:126 (2012), 1 – 10.
- 3. G. S. Jeong and B. E. Rhoades, Maps for which $F(T) = F(T^n)$, Fixed Point Theory Appl. 6 (2005), 87 131.
- M. Jovanović, Z. Kadelburg, and S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl. 2010 (2010), 1 – 15.
- 5. M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl. 2010 (2010), 1 – 7.
- 6. M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 7 (2010), no. 9, 3123 3129.
- 7. S. Moradi and M. Omid, A fixed-point theorem for integral type inequality depending on another function, Int. J. Math. Analysis 4 (2010), no. 30, 1491 1499.
- T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861 – 1869.
- T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. 71 (2009), 5313 5317.