NEW CONVERGENCE ANALYSIS FOR COUNTABLE FAMILY OF RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

Authors

  • Y. Shehu Department of Mathematics, University of Nigeria, Nsukka, Nigeria

Abstract


In this paper, we construct a new iterative scheme by hybrid methods and prove strong convergence theorem for approximation of a common fixed point of a countable family of relatively quasi-nonexpansive mappings in a uniformly smooth and strictly convex real Banach space with Kadec-Klee property using the properties of generalized f-projection operator. Our results extend many known recent results in the literature.

 

Downloads

Published

2012-10-01

How to Cite

Shehu, Y. (2012). NEW CONVERGENCE ANALYSIS FOR COUNTABLE FAMILY OF RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES. Journal of Nonlinear Analysis and Optimization: Theory & Applications, 4(1), 75-83. Retrieved from http://www.math.sci.nu.ac.th/ojs302/index.php/jnao/article/view/127

Issue

Section

Research Article